Home > Project Euler, python > Project euler #38

Project euler #38

Take the number 192 and multiply it by each of 1, 2, and 3:
    192 × 1 = 192
    192 × 2 = 384
    192 × 3 = 576
By concatenating each product we get the 1 to 9 pandigital, 192384576.
We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5,
giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the
concatenated product of an integer with (1,2, ... , n) where n > 1?

python:

import time
ts = time.time()

def is_pandigital(n):
    digits = range(1,10)
    num = [int(n) for n in str(n)]
    num.sort()
    return num == digits

panmax = 123456789 # min 1-9 pandigital
for n in xrange(1, 10000):
    res = ''
    for m in xrange(1, 10):
        res += str(n * m)
        if len(res) == 9 and is_pandigital(res):
            if int(res) > panmax:
                panmax = int(res)

print panmax
print time.time() - ts
Categorie:Project Euler, python
  1. dicembre 22, 2013 alle 5:26 am

    What’s up, I read your blogs like every week. Your humoristic style
    is awesome, keep doing what you’re doing!

  1. No trackbacks yet.

Lascia un commento

Inserisci i tuoi dati qui sotto o clicca su un'icona per effettuare l'accesso:

Logo WordPress.com

Stai commentando usando il tuo account WordPress.com. Chiudi sessione / Modifica )

Foto Twitter

Stai commentando usando il tuo account Twitter. Chiudi sessione / Modifica )

Foto di Facebook

Stai commentando usando il tuo account Facebook. Chiudi sessione / Modifica )

Google+ photo

Stai commentando usando il tuo account Google+. Chiudi sessione / Modifica )

Connessione a %s...

%d blogger cliccano Mi Piace per questo: